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Droplet trapping in bendotaxis caused by contact angle hysteresis
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Passive droplet transport mechanisms, in which continuous external energy input is
not required for motion, have received significant attention in recent years. Experimental
studies of such mechanisms often ignore, or use careful treatments to minimize, contact
angle hysteresis, which can impede droplet motion, or even arrest it completely. Here,
we consider the effect of contact angle hysteresis on bendotaxis, a mechanism in which
droplets spontaneously deform an elastic channel via capillary pressure and thereby move.
We seek to understand when contact angle hysteresis prevents bendotaxis. We supplement
a previous mathematical model of the dynamics of bendotaxis with a simple model of
contact angle hysteresis, and show that this model predicts droplet trapping when hysteresis
is sufficiently strong. By identifying the equilibrium configurations adopted by these
trapped droplets and assessing their linear stability, we uncover a sensitive dependence
of bendotaxis on contact angle hysteresis and develop criteria to describe when droplets
will be trapped.
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I. INTRODUCTION

The transport of liquid droplets on small scales, where surface forces dominate over body forces,
occurs in myriad applications, ranging from droplet-based microfluidics [1] and medical diagnostics
[2] to fog harvesting [3] and microfabrication [4]. In many scenarios, such droplet transport is
achieved by active control of the droplet, usually through an applied pressure gradient. However,
there has also been particular interest in passive droplet transport mechanisms, which do not require
a continuous external energy input. Within this category, mechanisms can be further classified into
those that exploit a fixed geometry, such as placing droplets in wedges [5,6] or on cones [7–9],
and those that generate motion via deformation of their solid confines. Examples of mechanisms
relying on solid deformations include durotaxis [10,11]—droplet motion in response to gradients in
stiffness of the underlying substrate—and tensotaxis [12]—droplet motion in response to gradients
in strain of the underlying substrate.

One example of an entirely passive droplet-driven motion is offered by interactions of droplets
with bendable fibres or plates, which has been termed “bendotaxis” [13]. The essential mechanism
of bendotaxis is that surface tension forces associated with droplets cause the elements to bend
thereby creating a tapering that propels the droplets. This tapering relies on anisotropic channel
clamping conditions, e.g., clamped at one end and free at the other. While examples of this bending-
induced droplet self-propulsion have been studied for droplets trapped between cylindrical hairs
[14,15], it is easier to understand the interaction between bending and capillary pressure for a droplet
trapped within a deformable channel; Fig. 1 elucidates the mechanism behind bendotaxis in this
case. The negative pressure associated with a wetting droplet introduced into the channel results

*Now at British Antarctic Survey, Cambridge, United Kingdom.
†dominic.vella@maths.ox.ac.uk

2469-990X/2021/6(11)/114003(26) 114003-1 ©2021 American Physical Society

https://orcid.org/0000-0001-8381-5317
https://orcid.org/0000-0002-9167-6481
https://orcid.org/0000-0003-1341-8863
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.6.114003&domain=pdf&date_stamp=2021-11-05
https://doi.org/10.1103/PhysRevFluids.6.114003


BRADLEY, HEWITT, AND VELLA

FIG. 1. Schematic diagram illustrating the mechanism behind bendotaxis: an empty, two-dimensional
channel with one end clamped and the other free (left panel) experiences a deformation when a liquid droplet
that wets the channel walls is introduced (right panel). The resulting deformation (magnitude indicated by
black arrows) is larger at the meniscus closer to the free end (x+) than at the meniscus closer to the clamped
end (x−), creating a pressure gradient that drives the droplet toward the free end (blue arrow).

in an inwards deflection of its walls. Owing to the anisotropy in clamping conditions, the resulting
deformation is larger at the meniscus closer to the free end (referred to as x+) than at the clamped
end (x−). The pressure is therefore more negative at x+ than at x−; the resulting pressure gradient
drives the droplet towards the free end. In the absence of contact angle hysteresis, and, provided
that the walls do not touch, this motion will continue until the droplet reaches the free end. (Note
that this mechanism, albeit with a positive Laplace pressure and outwards deformation, also results
in nonwetting droplets spontaneously moving in the same direction; here we consider only wetting
droplets for simplicity.)

The growing list of passive droplet transport mechanisms described above is the result of
intensive investigation, particularly experimentally. Naturally, the main focus of these studies is to
gain an understanding of the physics that gives rise to the force imbalance and thus droplet motion.
However, since this force imbalance depends sensitively on the meniscus curvature, and hence the
contact angle of the droplet, it is also sensitive to contact angle hysteresis—the asymmetry between
advancing and receding contact angles that results from local liquid pinning on inhomogeneities
in the surface [16]. In practice, hysteresis is often carefully controlled (e.g., by using “slippery”
surfaces that are close to hysteresis-free [8]). Alternatively, at the theoretical level it is usually treated
in a static fashion [7] or neglected entirely. In the scenarios where these mechanisms are intended to
be exploited, however, conditions cannot always be carefully controlled, and some hysteresis will
be present; it is therefore of practical importance to understand the influence of hysteresis on these
droplet transport mechanisms. The worst case scenario from the perspective of droplet transport
is that contact angle hysteresis completely arrests the motion, as has been shown to be possible
recently for droplets in tapered channels [17,18] (though these studies also showed that contact
angle hysteresis can be used to develop a tweezer for droplets, demonstrating that contact angle
hysteresis can also be usefully exploited if properly understood).

In this paper, we focus on the effect of contact angle hysteresis on bendotaxis. In bendotaxis,
the droplet motion results from the (self-induced) tapering of the channel; since droplets in tapered
channels with externally imposed channel tapering can be trapped part-way along the channel as a
result of contact angle hysteresis, we might expect a similar scenario in the bendotaxis mechanism.
This leads to the two main questions that we aim to answer in this paper: can contact angle hysteresis
prevent droplets from self propelling along deformable channels by bendotaxis? And, if so, when
does this hysteresis-induced “trapping” occur?

This paper is structured as follows. In Sec. II we provide a brief outline of the mathematical
model of bendotaxis described by [13], which we supplement with a simple model of dynamic
contact angle hysteresis. In nondimensionalizing this model, we identify four key dimensionless
parameters: a channel bendability, a contact angle hysteresis parameter, a dimensionless droplet
volume, and a dimensionless initial droplet position. The remainder of the paper is dedicated to
understanding if and, if so, when (i.e., in which regions of this four-dimensional parameter space)
is contact angle hysteresis sufficiently strong to prevent droplets from self-propelling along the
channel. In Sec. III we present numerical solutions of the governing equations; these solutions
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FIG. 2. (a) Schematic diagram of a droplet in a two-dimensional channel consisting of two flexible walls
of thickness b and a rigid end. The channel has undeformed wall separation 2H . The menisci contact the walls
at perpendicular distances x = x−(t ) and x = x+(t ) from the clamped end of the channel, with contact angles
θ = θ−(t ) and θ = θ+(t ), respectively.

confirm that, when hysteresis is sufficiently strong, droplets may get trapped and offer insight into
how the system parameters affect whether droplets will be trapped. Following this, Sec. IV concerns
the trapped configurations of droplets—i.e., the equilibria of the system. We map out the locations of
these equilibria in parameter space and assess their linear stability. In Sec. V we address the central
question of the paper: when does contact angle hysteresis prevent droplets from self-propelling
along deformable channels? By making an approximation that droplets that are ultimately trapped
do not move appreciably from their initial positions, we repurpose the equilibrium maps developed
in Sec. IV to describe whether droplets of given parameters will be trapped or not. Finally, in Sec. VI
we summarize our findings and discuss possible directions for further investigation.

II. MATHEMATICAL MODEL

We consider the setup shown in Fig. 2: a channel bounded by two narrow, flexible beams of
thickness b, length L, density ρs, and Young’s modulus E , are clamped parallel to one another at a
distance 2H apart, at one end of the beams. This clamped end defines the z-axis, and the axis of the
channel (parallel to the undeformed beams) defines the x-axis; z = 0 is defined to be the center of
the undeformed channel, while the deformed channel walls lie at z = ±h(x, t ). Here we consider
only behavior in the (x, z)-plane, but assume for simplicity that the channel is relatively narrow
(width much smaller than the channel length L) in the direction into the page.

The channel contains a droplet of liquid of viscosity μ and density ρ. The droplet has (two-
dimensional) volume �, and makes a liquid bridge between the channel walls, wetting them over
the region x−(t ) < x < x+(t ) (we assume that the droplet-channel system is symmetric about the
center line z = 0, so that this contact point is identical on both sides of the droplet). The droplet
makes a contact angle θ±(t ) at the menisci located at x±, respectively; it is through the dynamically
evolving contact angles θ± that we include contact angle hysteresis in our model.

A. Fluid flow model

We assume that the drop is long and thin, �/H2 � 1, so that lubrication theory [19] applies.
Within this framework, the local conservation of mass combined with the kinematic boundary
condition at the channel walls ensures that the droplet pressure p(x, t ) and channel half-width h(x, t )
satisfy Reynolds’ equation [19]:

∂h

∂t
= 1

3μ

∂

∂x

(
h3 ∂ p

∂x

)
. (1)

The pressure within the liquid, p(x, t ) is coupled to the channel shape, h(x, t ), as we shall discuss
shortly. However, we first discuss the boundary conditions on pressure that are appropriate.
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The pressure at the droplet menisci depends on the meniscus shape. For small Bond number
droplets, ρgH2/γ � 1, the effect of hydrostatic pressure on the droplet can be neglected; in partic-
ular, the menisci are minimal surfaces, i.e., they are approximately arcs of circles with curvatures

κ± = − cos θ±
h(x = x±, t )

. (2)

The pressure boundary conditions imposed on (1) are therefore

p = −γ cos θ±
h

at x = x±, (3)

where γ is the surface tension of the air-liquid interface.
Droplet motion is driven by the pressure difference along the droplet. In typical laboratory

conditions, the timescale of evaporation is significantly longer than the timescale of droplet motion
[13]. Evaporation can therefore be ignored and the flux of fluid through the menisci must balance
that caused by motion, giving the kinematic conditions

dx±
dt

= − h2

3μ

∂ p

∂x

∣∣∣∣
x=x±

. (4)

B. Beam deflection model

To couple the pressure within the droplet to the shape of the channel walls, we use linear beam
theory [20]. This theory is valid provided that the beams are thin (b � L) and undergo small
deformations in comparison with their length (which is guaranteed if H � L, and is consistent
with our use of lubrication theory in the fluid). In this framework, the shape of the channel wall,
h(x, t ), satisfies the Euler-Bernoulli equation

B
∂4h

∂x4
= q(x, t ), (5)

where B = Eb3/12 is the bending stiffness of the channel walls (independent of Poisson’s ratio
because the walls are narrow [21]) and q(x, t ) is the applied load, which is equal to the droplet
pressure in the wetted portion of the beam and zero otherwise,

q(x, t ) =
⎧⎨
⎩

0 for 0 < x < x−(t ),
p(x, t ) for x−(t ) < x < x+(t ),
0 for x+(t ) < x < L.

(6)

[Note that in using the static beam equation (5), we have neglected the wall inertia and weight
since Ref. [13] showed that, in typical experimental conditions, wall inertia and the weight of both
the channel wall and droplet were both negligible.]

By combining (1), (5), and (6), we can eliminate the droplet pressure to give a system of partial
differential equations (PDEs) for the channel half-width:

0 = ∂4h

∂x4
0 < x < x−(t ), (7)

∂h

∂t
= B

3μ

∂

∂x

(
h3 ∂5h

∂x5

)
x−(t ) < x < x+(t ), (8)

0 = ∂4h

∂x4
x+(t ) < x < 1. (9)
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To proceed further, we require boundary conditions. We note first that combining (6) with (3)
and (5) gives [

∂4h

∂x4

]
x=x±

= ∓γ cos θ±
B

h(x±, t )−1, (10)

where square brackets denote the jump in a quantity across the meniscus denoted in the subscript,
e.g., for x+:

[ f ]x+ = lim
x↓x+

f (x) − lim
x↑x+

f (x).

In contrast to the discontinuity in the fourth derivative of h(x, t ) at the menisci, we assume that h and
its first three derivatives (corresponding to the beam slope, moment, and shear force, respectively)
are continuous across the menisci:

[h]x± = 0, (11a)[
∂h

∂x

]
x±

= 0, (11b)

[
∂2h

∂x2

]
x±

= 0, (11c)

[
∂3h

∂x3

]
x±

= 0. (11d)

In (11d) we have ignored the line force from surface tension. The validity of our neglect of the line
force may be determined by considering the net force exerted by the droplet on the beam: with the
line force included, the droplet pressure p ∼ γ sin θ+δ(x − x+) + γ cos θ+/H , where δ is a Dirac δ

function, and the total force on the beams is∫ x+

x−
p dx ∼ γ sin θ+ + γ cos θ+

L

H
.

Comparing the contribution to the total force from the line force (first term above) with the large-
scale contribution from surface tension (second term) demonstrates that the former can be neglected
provided that tan θ± � L/H . This holds for the very slender channels considered experimentally in
Ref. [13], provided that the contact angle is not close to 90◦.

Having considered boundary conditions at the edge of the droplet, we must also impose boundary
conditions at the two dry ends of the beams. We impose clamped boundary conditions at x = 0:

h = H and
∂h

∂x
= 0 at x = 0, (12)

and assume that at their far end (x = L) the beams are free—they are not subject to any moment or
shear—so that

∂2h

∂x2
= 0 and

∂3h

∂x3
= 0 at x = L. (13)

In making this “free end” assumption, we are neglecting the possibility that the ends of the beams
may touch, for example if the droplet surface tension is sufficiently strong. As we shall see, those
droplets that become trapped typically do so close to their initial position, and while the channel
wall displacements remain small, making this a reasonable assumption. The case in which the ends
touch has been considered by Ref. [22].

The asymmetry in boundary conditions between (12) and (13)—clamped at one and, and free at
the other—means that, for a given imposed force, a larger deflection is observed towards the free end
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FIG. 3. (a) Plot of the dynamic contact angle law (14) relating θ to the contact line speed ẋ+, fitted to
example experimental data from [23] for a water droplet on a polyethylene terephthalate substrate with θa =
70.5◦, θr = 38.5◦ (points reproduced from their Fig. 6). (b) Plots of the hysteresis parameter λmax, defined in
(16), as a function of θa − θr for various advancing angles θr (as indicated by the labels).

of the channel (i.e., the channel is effectively “softer” towards the free end, even though the bending
stiffness is constant). This asymmetry is a crucial part of the mechanism that drives bendotaxis.

C. Contact angle hysteresis

A key parameter in our model of dynamic bendotaxis is the contact angle that each meniscus
makes with the beam, denoted θ±. While the energetically preferred equilibrium value of the contact
angle is determined by a balance between the surface energies of the three phases that meet at the
contact line, it is also known that this value can be modified by the presence of microscopic defects
to give contact angle hysteresis [16,24]. Moreover, even in the absence of defects, hydrodynamic
effects mean that the contact angle observed in dynamic scenarios may differ substantially from its
equilibrium value [25].

Many different models for contact angle hysteresis and for the dynamic contact angle have been
proposed [25]. We adopt perhaps the simplest possible model that allows different advancing and
receding contact angles with the key feature that a jump in the contact angle occurs at zero meniscus
velocity. In particular, we assume that (1) the droplet-channel system has intrinsic static advancing
and receding contact angles, θa � θr , respectively; (2) a stationary interface may take any contact
angle θr � θ � θa; and (3) a dynamic meniscus has a constant contact angle equal to θa if the
meniscus is advancing (liquid-invading-vapor) or θr if the meniscus is receding (vapor-invading-
liquid). We may therefore write

θ± = θa ± ẋ± > 0, (14a)

θr � θ± � θaẋ± = 0, (14b)

θ± = θr ± ẋ± < 0, (14c)

where we have accounted for the inherent asymmetry that the meniscus at x = x± is advancing
(receding) when ±ẋ± > 0 (<0). The assumption that the advancing and receding angles are inde-
pendent of speed is consistent with experimental observations that, at least for moderate capillary
numbers, any dependence on meniscus velocity is rather weak [23,26–30]. An example of a fit to
prior experimental data of (14) is shown in Fig. 3(a).

While the range of values that can be adopted by the contact angle for a stationary meniscus
may appear to be ill-constrained by (14), in such situations the contact angle is determined from
the pressure, via (3): the pressure takes the (unique) value that ensures that the pressure gradient
(and thus velocity) are zero at the meniscus, thereby determining θ±. We note also that although the
conditions for the left and right menisci given in (14) may hold independently of one another (giving
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nine possible cases in total), they must be compatible with conservation of mass; for example, (14c)
corresponds to both menisci receding and so is incompatible with channel walls that are deflected
inwards.

In our system, the values of the contact angles themselves do not appear; rather it is cos θ± that
appears in, for example, the pressure condition (3). For notational convenience, we shall therefore
introduce the parameter

λ = cos θ−
cos θ+

− 1 (15)

as a measure of the instantaneous contact angle asymmetry. The maximum value of this parameter
is attained with θ+ = θa, θ− = θr , and so we let

λmax = cos θr

cos θa
− 1 (16)

be a measure of the asymmetry between the advancing and receding angles. While this measure of
contact angle hysteresis is different from the more common definition 
θ = θa − θr , the two are
closely related: Fig. 3(b) shows that λmax is monotonic increasing in 
θ and λmax = 0 if and only
if θa − θr = 0. Moreover, for small differences between advancing and receding contact angles,
Eq. (16) can be expanded to show that λmax ∝ 
θ , approximately.

Note that the instantaneous asymmetry parameter λ has the following properties: (1) 0 � λ �
λmax (we will, therefore, often refer to λmax as the maximum contact angle asymmetry), (2) λ = 0
corresponds to θ+ = θ− (equal contact angles at both menisci), and (3) λ = λmax if and only if
θ+ = θa and θ− = θr (as we expect for a droplet moving towards the free end of the channel with
“+” meniscus advancing and “−” meniscus receding).

D. Initial conditions

The problem, which consists of the PDE (7)–(9) with boundary conditions (10)–(13), kinematic
conditions (4), and contact angle condition (14) for h(x, t ), θ±(t ), x±(t ), is closed by specifying
initial conditions. We assume that the channel is initially undeformed

h(x, 0) = H, (17)

and the menisci are at known locations

x±(0) = x0
±, (18)

which must satisfy the volume constraint

2H
(
x0
− − x0

+
) = �, (19)

for a given (two-dimensional) droplet volume �.
Note that an initially undeformed channel shape (17) provides no torque, while the droplet

applies a finite torque associated with a nonzero droplet pressure; at early times, the two torques
applied to the channel walls—droplet pressure and restorative from bending—will not be in balance.
We therefore anticipate an early period during which the channel walls respond quickly to this
imbalance by bending inwards. During this period, the droplet must spread, with menisci moving
in opposite directions; to be consistent with this, we take initially advancing contact angles at the
menisci,

θ±(0) = θa. (20)

As we shall see, the initial conditions (20) result in a scenario in which the contact angle at the
“+” meniscus is always the advancing angle; accordingly, the conditions (14b) and (14c) for the
“+” meniscus are superfluous, but we retain them for completeness (in particular, for a nonwetting
droplet, θ± > 90◦, they must be included in the model).
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E. Nondimensionalization

To nondimensionalize the problem, we use longitudinal and transverse scales based on the
channel length L and width H , respectively. We use the pressure scale BH/L4 (the characteristic
pressure required to bend the channel wall a distance comparable to the channel width) and the
capillary timescale τc = μL2/(|γ cos θa|H ) (the characteristic time for liquid of viscosity μ, surface
tension γ with contact angle θa to imbibe a distance L in a capillary tube of width H). We therefore
introduce the dimensionless variables

x̂ = 1

L
x, x̂± = 1

L
x±, ĥ = 1

H
h, t̂ = 1

τc
t, p̂ = L4

BH
p. (21)

In terms of these dimensionless variables, the system of PDEs (7)–(9) reads

0 = ∂4ĥ

∂ x̂4
, 0 < x̂ < x̂−(t̂ ), (22)

∂ ĥ

∂ t̂
= 1

3|ν|
∂

∂ x̂

(
ĥ3 ∂5ĥ

∂ x̂5

)
, x̂−(t̂ ) < x̂ < x̂+(t̂ ), (23)

0 = ∂4ĥ

∂ x̂4
, x̂+(t̂ ) < x̂ < 1. (24)

Here

ν = γ cos θaL4

BH2
(25)

is the channel “bendability” and characterizes the ability of the typical capillary pressure within the
droplet to bend the channel walls.

In terms of the dimensionless variables, the kinematic conditions (4) read

dx̂±
dt̂

= 1

3|ν|
∂5ĥ

∂ x̂5

∣∣∣∣
x̂=x̂±

. (26)

The channel boundary conditions (11)–(13) read

ĥ = 1,
∂ ĥ

∂ x̂
= 0, at x̂ = 0, (27)

∂2ĥ

∂ x̂2
= 0,

∂3ĥ

∂ x̂3
= 0, at x̂ = 1, (28)

[
ĥ
]

x̂±
=

[
∂ ĥ

∂ x̂

]
x̂±

=
[
∂2ĥ

∂ x̂2

]
x̂±

=
[
∂3ĥ

∂ x̂3

]
x̂±

= 0, (29)

and the pressure boundary condition (3) reads

∂4ĥ

∂ x̂4

∣∣∣∣
x̂=x̂±

= − ν

ĥ(x̂±, t )

cos θ±
cos θa

(30)

Finally, the dimensionless initial conditions are

ĥ(x̂, 0) = 1, x̂±(0) = x̂0
± = x0

±
L

, θ±(0) = θa. (31)

The problem (22)–(31) together with the contact angle conditions (14) contains five dimension-
less parameters: ν, x̂0

+, x̂0
−, θa, and θr . However, given that in an experiment it is the droplet volume
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FIG. 4. Flowcharts of the dynamic events that result in a change of boundary conditions at the “+”
meniscus (top row) and at the “−” meniscus (bottom row) in the model equations describing droplet motion
by bendotaxis with contact angle hysteresis. The arrow labels indicate the function that triggers the transition;
up (down) arrows indicate that the function must increase (decrease, respectively) through the corresponding
threshold value. (Recall that the pressure gradient at a meniscus has an opposite sign to the direction of motion
of that meniscus [see (26)], so sign changes in pressure gradient result in a change in the opposite sense to the
meniscus velocity.)

that is specified, it is more natural to use the dimensionless droplet volume

V = �

2HL
= x0

+ − x0
−

L
= x̂0

+ − x̂0
− (32)

to replace one of the initial meniscus positions. Similarly, it is helpful to use the maximum
contact angle asymmetry, λmax, in place of one of the contact angles. We therefore consider
(ν, x̂0

+,V, λmax, θr ) to be the pertinent set of dimensionless variables describing a particular experi-
ment. For simplicity, we also set θr = 0◦ henceforth, since we are concerned with how the presence
of contact angle hysteresis (rather than absolute value of the contact angles) affects droplet mobility.

Henceforth, hats are dropped (including on the dimensionless parameters x̂0
− and x̂0

+) and all
variables are assumed to be dimensionless, unless otherwise stated.

III. NUMERICAL SOLUTIONS

In this section, we present numerical solutions of the model equations (22)–(31) with contact
angle conditions (14). As well as demonstrating how the transitions between the various contact
angle conditions should occur in practice, these numerical solutions confirm that our simple model
of contact angle hysteresis is sufficient to describe droplet trapping and offers qualitative insight
into when this phenomenon occurs.

The numerical scheme employed here is very similar to that described in the supplementary
information of Ref. [13], with transitions between advancing, pinned, and receding conditions at
each meniscus determined by evaluating appropriate event-detection functions at each time step, as
outlined in the flowchart in Fig. 4. Briefly, the problem is solved numerically by first transforming
it onto one defined only on the droplet region x−(t ) < x < x+(t ). (This is possible because the
shape in the dry regions, 0 < x < x− and x+ < x < 1, can be found analytically and used to give
explicit, effective boundary conditions at the menisci that encode the behavior of the adjacent dry
regions.) The resulting “drop-only” problem is then transformed into a flux-conservative form on a
time-independent domain by a suitable (time-dependent) rescaling. The resulting partial differential
equation is solved numerically with the method of lines [31]: it is discretized in space, and the
resulting set of ordinary differential equations are solved numerically using the ode15s routine
implemented in MATLAB. The code used to solve these equations numerically can be found at
Ref. [32].
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FIG. 5. An example of the effect of contact angle hysteresis on bendotaxis as predicted by our model.
The plots in (a)–(c) show the evolution of (a) the displacement of the menisci from their initial positions,
(b) the normalized meniscus pressure, and (c) the contact angle asymmetry λ. [Note that the dashed curves
are continuous across the two panels of (a), which use logarithmic axes to facilitate distinction between the
curves.] These predictions are obtained by solving model equations (22)–(31) with ν = 4, x0

+ = 0.65,V = 0.2
(i.e., x0

− = 0.45). In each plot, solid curves correspond to results for the “+” meniscus, while dashed curves
correspond to results for the “-” meniscus, as indicated by the legend in (a). Solutions are shown for three
different values of the maximum contact angle asymmetry λmax as follows: λmax = 0 (purple curves, i.e., no
contact angle hysteresis, corresponding to θa = 0◦), λmax = 0.02 (blue curves, relatively small contact angle
hysteresis, θa = 10◦), and λmax = 0.04 (green curves, relatively large contact angle hysteresis, θa = 16◦). The
direction of increasing λmax is indicated by the arrows in each plot. A log scale on the y-axis is used in (a) to
aid distinction between the curves. In (c), the colored horizontal dot-dashed lines indicate the corresponding
value of λ = λmax and the black dashed line indicates λ = λ∞ (for sufficiently large λmax, the contact angle
asymmetry reaches λ∞, but evolves no further). The solid blue vertical lines indicate t = t1, the time at
which the “-” meniscus first becomes pinned, and t = t2, the time at which the “-” meniscus first depins, for
λmax = 0.02. The panels in (d) indicate the droplet-channel system schematically throughout the motion, with
corresponding droplet colours, as well as the corresponding times t = t1, t2, where appropriate. Translucent
schematics correspond to the second pinning period, which is unimportant for droplet trapping (see discussion).

A. Hysteresis dependence

Figure 5 shows the evolution of the position of the menisci, the normalized meniscus pressure,
the contact angle asymmetry, and the ratio of the channel widths at the menisci as determined from
the numerical solution of the model equations for three different values of the maximum allowed
contact angle asymmetry, λmax (no asymmetry, a relatively small amount, and a relatively large
amount—we shall quantify in due course what small and large means). In each case, identical initial
conditions (x0

+ = 0.65, x0
− = 0.45) are used.

In the early stages of the motion, the channel walls move inwards in response to the negative
capillary pressure; this squeezes the droplet so that both menisci advance (i.e., move in opposite
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directions). As a result, λ = 0 and solutions with different λmax are identical at early times: the
droplet does not have any information about the maximum possible contact angle asymmetry during
the early squeezing phase. As the channel continues to deform inwards, the pressure gradient at x−
decreases, eventually reaching zero so that this meniscus stops moving: the advancing boundary
condition (14a) is replaced by the pinned boundary condition (14b). At this point, the behavior of
the solutions for different values of λmax diverges.

If λmax = 0, the meniscus x− is only instantaneously pinned: it immediately turns and moves
towards the free end (purple traces in Fig. 5); this scenario is precisely that considered by [13]: the
droplet moves along the channel, with both menisci traveling in the same direction (it “translates”),
and ultimately reaches the free end. Both menisci increase their speed during this motion, this
acceleration occurs despite the low Reynolds number of the motion, being driven by an increasing
ratio between the channel widths at the menisci—the channel is effectively softer at the meniscus
closer to the free end (x+) and thus deformations are easier to achieve there [Fig. 5(d)]. As the
droplet approaches the free end, the meniscus x− may be forced, by conservation of mass, to change
direction and move once again towards the clamped end, as indicated schematically in Fig. 5(d).
In Appendix A, we describe these dynamics in more detail and show that this final period is not
important for droplet trapping, and is thus ignored henceforth.

When there is some contact angle hysteresis, i.e., λmax > 0, the “-” meniscus remains pinned
for a period of time. There are two possible fates for the system beyond this point: if λmax is large
enough, the meniscus remains pinned for all time and the droplet becomes trapped, whereas for
smaller λmax the meniscus becomes unpinned at some time and the droplet will escape.

In more detail, after the “-” meniscus become pinned, the “+” meniscus continues to advance
and the channel deformation continues to increase, thus reducing the pressure at x+ (increasing
the suction) and maintaining θ+ = θa. To maintain a pinned condition at x−, the contact angle
asymmetry λ increases [the contact angle θ− decreases, which acts to increase the magnitude of
the suction pressure via the Laplace pressure condition (30)]. If x− remains pinned, the system
tends towards an equilibrium, and the contact angle asymmetry tends to a constant value λ∞
(the green curves in Fig. 5). The value of λ∞ depends on ν, V , and x0

+ and emerges from the
dynamic model—it is not possible to determine it a priori; our simulations give λ∞ ≈ 0.03 for the
values ν = 4,V = 0.2, x0

+ = 0.65 used here. If λmax < λ∞, however, the system cannot reach this
equilibrium and the x− meniscus instead depins when λ reaches λmax (the blue curves in Fig. 5).
Thereafter, we have θ− = θr (while θ+ = θa still) and the droplet then accelerates towards the free
end of the channel. (As in the case when λmax = 0, there may be a final squeezing phase in which x−
is forced to reverse direction, but this does not prevent x+ reaching the free end and is not discussed
further.)

In summary, when contact angle hysteresis is relatively small, λmax < λ∞ the droplet ultimately
escapes the channel by translating to the free end. Otherwise, the maximum allowed asymmetry is
relatively large, λmax > λ∞, then the droplet will be trapped indefinitely: it will remain part way
along the channel. Note that the system does not have any information about the value of λmax until
λ reaches it; solutions with any λmax � 0.03 would therefore behave identically to the simulation
shown here with λmax = 0.04. It is also interesting to note that the simulation with λmax = 0.02 takes
approximately twice as long to reach the free end compared to the simulation with no hysteresis,
λmax = 0; this suggests that droplet dynamics have strong sensitivity to contact angle hysteresis
even when droplets ultimately escape; the slowing down results from the fact that the difference in
Laplace pressure between the mensici is reduced in the case with contact angle hysteresis (compared
to that without) and hence can permit only a slower flow. Although we are primarily concerned with
droplet trapping in this paper, we note that this finding suggests that experimental studies of the
dynamics of self-propelled droplets must be careful to minimize contact angle hysteresis if its effect
is to be neglected in the corresponding models. Reference [13] reported droplet speeds that were
systematically lower than model predictions; the results presented here suggest that a moderate
contact angle hysteresis may be responsible for this discrepancy.
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FIG. 6. Temporal evolution of the (a) meniscus position x+(t ) and (b) contact angle asymmetry λ de-
termined from numerical solution of our model equations (22)–(31), with V = 0.2, ν = 2 and λmax ≈ 0.02;
results with different initial meniscus positions in the range 0.5 � x0

+ � 0.9 are shown. Note that droplets
starting close to the free end (x0

+ sufficiently large, yellow hue curves) escape, while those starting closer to
the base (x0

+ sufficiently small, blue hue curves) are trapped indefinitely. The red dashed trajectory corresponds
approximately to x0

+ = x0,escape
+ , the smallest value of x0

+ at which the droplet escapes (see Sec. V).

B. Initial position dependence

To illustrate the effect of the initial droplet position on its ultimate fate, Fig. 6 shows the
numerically obtained droplet trajectories, x+(t ), together with the corresponding evolution of the
contact angle asymmetry, λ(t ), for various initial meniscus positions in the range 0.5 � x0

+ � 0.9.
As observed previously, all droplets undergo an initial squeezing phase during which both menisci
advance and λ = 0. Once λ starts to increase, however, the effect of the initial position becomes
apparent: for droplets that start sufficiently close to the free end, λ reaches λmax, at which point the
droplet begins to translate and ultimately escapes. In contrast, for droplets that start closer to the
base (smaller values of x0

+), λ reaches λ∞ before λmax and the droplet is trapped. Note that here, as
before, droplets that are trapped remain close to their initial positions indefinitely.

This figure suggests that the final “trapped” value of the contact angle asymmetry, λ∞, is an
increasing function of x0

+, as we might expect: a greater contact angle difference will be needed
to maintain the pinned state when the droplet begins nearer the free end of the channel, which is
“softer” than the clamped end. The deformation in the pinned state is also an increasing function of
bendability ν and volume V (qualitatively, larger ν means a stronger pull on the beams, while larger
V increases the area over which this pull is applied). Accordingly, the effect of changes in ν and V
on the ultimate fate of the droplet is similar to that of the initial droplet position: for given values of
x0
+ and λmax, droplets of sufficiently large volume or in systems with sufficiently large bendability

will escape, whilst others will not; in other words, λ∞ is an increasing function of V and ν (data not
shown).

C. Discussion

The results shown in this section confirm our intuition that when hysteresis is sufficiently strong,
droplets may get trapped part way along the channel. The numerical solutions of our model highlight
three important features of the trapping mechanism that appear to be generic: first, the system
always passes through a squeezing period during which both menisci advance until x− is pinned;
second, there is a contact angle asymmetry, λ∞, required to maintain the meniscus at x− in a pinned
condition indefinitely; and, third, if λmax � λ∞, the maximum contact angle asymmetry is not
enough to pin the droplet indefinitely and so the droplet begins to translate with x+ advancing,
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ultimately reaching the free end (the droplet escapes). (Equivalently, if λmax > λ∞ the droplet
remains in the pinned state and the droplet is trapped.) Determining the value of λ∞ is therefore
critical to answering the central question of this paper: in which regions of (ν,V, x0

+, λmax) parameter
space do droplets get trapped within the channel as a result of contact angle hysteresis? While the
value of λ∞ cannot be determined a priori, but emerges as part of the solution, we can approximate
it by exploiting the observation that trapped droplets do not move significantly from their initial
positions. Before we are able to do so, however, we must consider the configurations occupied
when droplets are trapped, i.e., the equilibria of the system; we turn to this now.

IV. EQUILIBRIUM CONFIGURATIONS

The numerical solutions presented in Sec. III suggest that droplets can be trapped indefinitely if
the contact angle hysteresis is sufficiently large, or if droplets start sufficiently close to the clamped
end. In this section, we consider these trapped equilibrium states. We aim to determine when
equilibria exist and analyze their linear stability, with a view to (1) verifying that the numerical
solutions presented in Sec. III are indeed converging to true equilibria (rather than simply slowly
evolving transients) and (2) determining the linear stability of these equilibria.

In this section, we consider equilibrium configurations with contact angle conditions reflecting
those observed in the motion immediately preceding droplet trapping, i.e., we assume that θ+ = θa

(advancing) and θr < θ− < θa (pinned). We denote the contact angle asymmetry that this encodes
by λ = λe; the results of this section are then expected to be pertinent provided that λe is attainable,
i.e., provided that λe � λmax. Note that we use λmax to determine the equilibrium states recorded
by the time-dependent solution in the previous section. However, the equilibrium attained emerges
dynamically and may correspond to any value up to λmax; we analyze equilibria for a given λe in this
section and will then observe in Sec. V that the value of λ∞ typically corresponds to an equilibrium
that is close to the initial condition.

1. Equations for equilibrium

The equations that must be satisfied by equilibrium configurations can be recovered as the steady
case of the dynamic problem [Eqs. (22)–(30)]. The problem for the equilibrium channel wall shape
he(x) with menisci located at x± = X± is

d4he

dx4
= 0 0 < x < X−, (33)

d4he

dx4
= p0 X− < x < X+, (34)

d4he

dx4
= 0 X+ < x < 1, (35)

where p0 is the droplet pressure. This pressure is constant throughout the droplet and must satisfy

p0 = − ν

he

∣∣∣
x=X+

= − ν(1 + λe)

he

∣∣∣∣
x=X−

. (36)

The problem (33)–(36) must be solved subject to further boundary conditions

he = 1,
dhe

dx
= 0 at x = 0 (37)

and

d2he

dx2
= d3he

dx3
= 0 at x = 1, (38)

114003-13



BRADLEY, HEWITT, AND VELLA

with continuity conditions

[he]X± =
[

dhe

dx

]
X±

=
[

d2he

dx2

]
X±

=
[

d3he

dx3

]
X±

= 0. (39)

The solution he(x) must also satisfy the global volume constraint

V =
∫ X+

X−
he(x) dx, (40)

and the beam ends must not touch,

he(1) > 0. (41)

Note that by rearranging (36), the contact angle asymmetry λe can be expressed as a geometric
constraint on the solution:

λe = he(X−)

he(X+)
− 1. (42)

The condition (42) is useful for understanding the equilibrium maps presented in Sec. IV 3, which
indicate the regions of parameter space in which solutions to (33)–(41) exist.

2. Equilibria with 0 < X− � 1

The equations for equilibrium (33)–(41) do not have an analytic solution in general. However,
analytic progress can be made if we impose (instead of solving for) 0 < X− � 1, which serves as a
useful limiting case in the following.

In this case, we must have he(X−) ≈ he(0) = 1, using (37) and so, combining with the pressure
condition (36) we find that the equilibrium pressure within the droplet is simply p0 = −ν(1 + λe).
We can then readily find an analytic solution for the channel shape,

he(x) = 1 − ν(λe + 1)

24
×

{
(x − X+)4 + 4(X+)3(x − X+) + 3(X+)4 0 < x < X+,

(X+)3(4x − X+) X+ < x < 1,
(43)

where the meniscus position X+ must ensure that the pressure condition (36) is satisfied, requiring

X+ 4 = 8λe

ν(1 + λe)2
. (44)

To satisfy the volume constraint (40) we require that λe satisfies

λe

(1 + λe)2

(
3λe + 5

5λe + 5

)4

= νV 4

8
. (45)

Note that (45) has a solution only for νV 4 � 1.01; configurations with νV 4 > 1.01 violate x+ < 1:
the deformation they create is too large to accommodate the droplet within the channel.

Since we consider λe to be given here, Eq. (45) can be used to determine the corresponding ν for
a given V . With this constraint on ν, the open ends constraint (41) holds provided that

V >
4λe(3λe + 5)

5(λe + 1)(4λe + 3)
. (46)

We now move on to consider when equilibria with a particular value of λe are possible for
different values of the parameters ν and V . This will be guided by the conditions (45) and (46).

3. Equilibrium maps

Equilibrium configurations are obtained numerically. Full details of this procedure can be found
in Appendix B, but we note that, for convenience, we do not solve the (nonlinear) equilibrium Eqs.
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FIG. 7. Diagrams showing regions of (V, ν ) space for which solutions of Eqs. (33)–(40) exist with (a) λe =
0.3 (corresponding to an advancing angle θa ≈ 40◦) and (b) λe = 0.05 (θa ≈ 18◦). The schematic diagrams
indicate the shape of the configuration close to that region of parameter space. The black dashed curve indicates
(45), corresponding to equilibria with X− = 0 [Eqs. (44)–(46)]. The hatched region in (a) indicates where
solutions to (33)–(40) exist that violate the no-touching condition (41). In each plot the inset contains a close-up
of the main figure in the region 0 < ν < 10, 0 < V < 1.

(33)–(40) for given (ν,V, λe) directly; rather we specify one of the meniscus positions (typically
X−), and then solve Eqs. (33)–(39); the volume associated with each equilibrium is then readily
calculated using (40), and the equilibrium is retained only if it satisfies the open end condition (41).
By sweeping over all permissible values of X−, we pick up all possible solutions of (33)–(40). We
find that for a given (ν,V, λe) if a solution to (33)–(40) satisfying (41) exists, then that solution is
unique.

In Fig. 7 we show equilibrium maps that indicate the regions of (V, ν) space in which equilibria
exist, for two different values of λe, corresponding to very high hysteresis [λe = 0.3, Fig. 7(a)] and a
more typical value [λe = 0.05, Fig. 7(b)]. For completeness, we present data for 0 < ν < 100 but in
practice droplets in channels with ν � 10 are prone to trapping themselves by closing the channel
walls during the motion [13]; we include as insets in Fig. 7 the same equilibrium maps zoomed
into the region 0 < ν < 10 of parameter space in which configurations are not susceptible to this
“geometric trapping,” which are of most interest here.

We can rationalize the shape of these equilibrium maps by considering λe to be a geometric
constraint on the capillary induced wall deflections, as encoded by Eq. (42); capillary induced wall
deformations, whose size depends on the strength of surface tension (via ν), the length over which
the force is applied (via V ) and the position of the droplet (via X+) must exactly balance the contact
angle asymmetry λe. At small ν (weak surface tension), the Laplace pressure in the droplet is not
able to create enough deflection to satisfy the geometric constraint (42), regardless of the droplet’s
size or position in the channel, and so no equilibria exist. As ν increases, equilibria first appear
with X+ = 1 (see schematics in Fig. 7), since droplets are able to create the largest deflection when
they are at the free end of the channel. This lower boundary of ν values is decreasing in V (insets
in Fig. 7) because larger droplets can generate the same deflection by applying a lower pressure
(smaller ν) over a larger area. Similarly, the minimum value of ν (for a fixed V ) at which equilibrium
configurations exist is smaller for smaller λe—less deflection is needed to satisfy the geometric
constraint (42), which can therefore be achieved with a lower surface tension.

As ν increases (maintaining a constant volume, V ), equilibrium configurations have droplets
closer to the base, where the higher bendability is countered by pressure being applied over relatively
stiffer sections of the channel, and the channel width at the free end x = 1 is smaller. When ν is
sufficiently large, equilibria fail to exist because either (1) the channel width at the free end reaches
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FIG. 8. Equilibrium maps indicating (a) the value of λe associated with equilibria in (X+, ν ) space and
(b) the value of X+ associated with equilibria in (λe, ν ) space (with V = 0.3 in both cases). In both plots,
blank regions indicate areas where equilibria do not exist. The black dashed line in (b) indicates Eq. (45),
corresponding to equilibria with X− = 0.

zero (the two ends touch, violating the no contact condition (41); visible in Fig. 7 only for the larger
value of λe) or (2) the lower meniscus reaches the base, X− = 0, so that the droplet can move no
further to offset increasing bendability; this is shown by the dashed curve in Fig. 7 and is expressed
analytically by (46).

In Fig. 8 we show two other ways of presenting equilibrium maps. First, in Fig. 8(a), we plot the
value of λe associated with equilibria in (X+, ν) space, for the O(1) values of the bendability ν that
are of most interest. This plot indicates that equilibria in which the droplet is located closer to the
free end are associated with a larger λe (encoding a larger difference between the channel widths at
the menisci) and that this difference is more pronounced for larger ν.

Second, in Fig. 8(b) we plot the value of X+ associated with equilibria in (λe, ν) space. In
particular, this plot indicates that equilibria do not exist when the contact angle asymmetry λe is
too large (the droplet is not able to create enough deflection to satisfy (42), regardless of where it
sits in the channel) or too small (the droplet always creates too much deflection, regardless of where
it sits in the channel).

4. Stability

We analyze the linear stability of equilibria by letting

h = he(x) + εeσ t h1(x), x+(t ) = X+ + εeσ t , (47)

where ε � 1 is arbitrary, in the model equations.
After a standard linearization procedure, the problem for the wall perturbation, h1(x), becomes

0 = d4h1

dx4
0 < x < X−, X+ < x < 1, (48)

3νσh1 = d

dx

(
h3

e

d5h1

dx5

)
X− < x < X+, (49)

with boundary conditions,

h1 = dh1

dx
= 0 at x = 0, (50)

d2h1

dx2
= d3h1

dx3
= 0 at x = 1, (51)
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FIG. 9. (a) Equilibrium maps showing regions of (V, ν ) space for which solutions of (48)–(56) exist for
λ = 0.01, 0.05, 0.1, 0.2, 0.3, and 0.4, as indicated in the top right of each map. Red regions correspond
to linearly stable equilibria, and blue regions correspond to linearly unstable equilibria; the two regions are
separated by the cyan curves indicating solutions of (58), which correspond to σ = 0. (b, c, and inset) Growth
rates σ , obtained by numerically solving the BVP (48)–(56), at ν values along the corresponding colored lines
in (a). The blue dashed curve in (b) indicates an estimate of the growth rate of perturbations with λe = 0.05
obtained by solving the full model equations numerically and performing an exponential fit to the meniscus
displacement at early times.

and continuity conditions

[h1]X− =
[

dh1

dx

]
X−

=
[

d2h1

dx2

]
X−

=
[

d3h1

dx3

]
X−

= 0, (52)

[h1]X+ =
[

dh1

dx

]
X+

=
[

d2h1

dx2

]
X+

=
[

d3h1

dx3
+ ζ

d4he

dx4

]
X+

= 0. (53)

Here we have made extensive use of the continuity of the equilibrium shape (39). The perturbation
must conserve volume, so we require

0 =
∫ X+

X−
h1 dx − X 1

+he(X+). (54)

The final (pressure) boundary conditions on (48) and (49), at x = X±, reflect the fact that the
meniscus at X− is pinned, and the meniscus at X+ is free to move:

d5h1

dx5
= 0 at x = X−, (55)

d4h1

dx4
= ν

h2
e

(
ζ

dhe

dx
+ h1

)
at x = X+. (56)

The boundary value problem (BVP) given by (48)–(56) must be solved numerically; we use the
BVP4c routine implemented in MATLAB, which returns the growth rate σ as part of the solution.
Numerical solutions of the BVP agree well [compare the blue solid and dashed curves in Fig. 9(b)]
with numerical solutions of the full model equations, in which the growth rate is determined by an
exponential fit to the meniscus trajectory at early times and the perturbation away from equilibrium
is applied as a sinusoidal perturbation to the channel shape that preserves volume. Note that in (47),
we neglected a variation in the contact angle θ−; agreement between numerical solutions of the full
model equation and the BVP suggest that this variation is not important.
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We do not dwell further on solutions of the BVP, however, because we are primarily interested in
the stability of equilibria (i.e., the sign of σ ), rather than the timescale of evolution (the magnitude
of 1/σ ). It is instructive to consider instead the marginal stability problem given by (48)–(56) with
σ = 0. In this case (49) can be integrated directly to give

h3
e

d5h1

dx5
= 0, (57)

where we have used (55) to set the constant of integration to zero. From (57) and the remaining
boundary conditions [(50)–(53) and (56)], we can express h1 in terms of he. The conservation of
volume equation (54) then becomes a nonlinear constraint of the form

S(ν,V, λe) = 0. (58)

Numerical solutions of (58) are shown as cyan curves in the equilibrium maps shown in Fig. 9(a).
We see that for small to moderate values of λe there are no solutions of (58) in the range 0 < ν < 10
that is of interest, indicating that σ does not change sign in this region (assuming σ is continuous).
Since σ < 0 somewhere in these regions [Fig. 9(b)], we conclude that σ < 0 everywhere in these
regions, i.e., any equilibrium is stable.

For λe � 0.1, there are solutions of (58) for ν < 10 [Fig. 9(a)], indicating that the growth rate σ

changes sign in these regions. For larger values of the channel bendability ν, and volumes V [i.e.,
in the red regions of Fig. 9(a)], equilibria have σ < 0, corresponding to stable equilibria [Fig. 9(b)].
For smaller values of ν and V (in the blue regions, respectively), equilibria have σ > 0, and are
unstable. It is perhaps surprising that the proportion of the equilibria that are unstable increases with
the contact angle asymmetry λe; this can be rationalized by thinking again of λe as a geometric
constraint: higher λe is associated with smaller h(X+) [to maintain the ratio (42)], and thus a larger
change in the suction pressure when the droplet is perturbed (recall the suction pressure scales with
the inverse of the channel width).

We stress that it is only with large values of λe that equilibria might be unstable. Since the
results in this section are pertinent only for λe < λmax, these unstable equilibria are possible only
for λmax � 0.1; with our typical receding angle θr = 0◦, this corresponds to a large contact angle
difference of approximately 25◦. Moreover, the contact angle difference required to obtain a large
hysteresis increases with larger θr . In what follows, the results of this section are used to make
predictions of the parameter values for which droplets are trapped; we shall consider surfaces only
with λmax � 0.1, for which any attainable equilibria are guaranteed by this analysis to be stable.

V. DROPLET TRAPPING

Following the previous analysis describing when equilibria are possible, and assessing their
stability, we are now in a position to describe the conditions under which droplets become trapped
part way along the channel as a result of contact angle hysteresis. We have seen that, for λmax � 0.1,
droplets may become trapped in stable equilibria if they remain in the stage of the motion with x−
pinned; this, in turn, is possible, when λmax > λ∞, i.e., the contact angle asymmetry available is
larger than that required to maintain the pinned state indefinitely. The crucial point to note is that if
an equilibrium exists then the associated contact angle asymmetry λe(ν,V, X+) ≈ λ∞(ν,V, x0

+ =
X+): with given volume V and bendability ν, the contact angle asymmetry in equilibrium is
approximately that for a pinned droplet with initial condition x0

+ = X+. (Any difference between
λe and λ∞ is a result of the meniscus motion in the squeezing period, which is brief, making the
difference relatively small; see Fig. 5.) As an approximate criterion for the trapping of a droplet,
therefore, we argue that droplets will be trapped if λmax � λe(ν,V, X+ = x0

+), and will escape if
λmax � λe(ν,V, X+ = x0

+).
With this approximate criterion, the equilibrium maps in Fig. 8 can be repurposed as maps

describing whether droplets will be trapped or not for a given value of λmax (these maps are shown
again in Fig. 10 with updated labels to reflect this interpretation of the equilibria). Figure 10(a)
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FIG. 10. Predictions from the equilibrium calculation of (a) λ
escape
max (the largest value of λmax at which a

droplet with initial position x0
+ is able to escape) and (b) x0,escape

+ (how far along the channel a droplet must
start if it is to escape when the maximum contact angle asymmetry is λmax). Both plots correspond to a
droplet volume V = 0.3. In the upper right of (a) and upper left of (b), no equilibria with λ

escape
max = λe exist

(see Fig. 8), and so we predict that droplets in configurations with (x0
+, ν ) that lie in this region will always

escape, regardless of where they start in the channel. Similarly, configurations with (λmax, ν ) that lie in the
hatched region in the lower right of (b) will always trap droplets of this volume. The black dashed curve in
(b) indicates the prediction (59) for the boundary of this “always escape” region.

shows the largest value of λmax at which a droplet of given x0
+, ν and V still ultimately escapes (as

predicted by our approximate criterion); we denote this value by λ
escape
max . As we see from Fig. 10(a)

(and as was expected from the numerical solutions presented in Sec. III), λ
escape
max is an increasing

function of x0
+: droplets that start closer to the free end are more likely to escape. Moreover, for

relatively low bendabilities, ν � 1, droplets remain trapped wherever they start within the channel,
even with very small hysteresis λmax � 0.02, which corresponds to an advancing contact angle
θa ≈ 11◦.

Similarly, the regime diagram shown in Fig. 10(b) (in (λmax, ν) space) can be interpreted as
a map showing how far along the channel the initial position must be for the droplet to escape
if the maximum contact angle asymmetry is λmax; we denote this “escape position” by x0,escape

+ .
(Another way to think of these data are as a surface separating trapped and escaping configurations:
configurations with initial condition x0

+ < x0,escape
+ will be trapped, while those with initial condition

x0
+ � xescape

+ will escape.) As expected, with larger λmax droplets need to start closer to the free end
to escape. Similar maps for other droplet volumes V = 0.1, 0.2, 0.4, and 0.5 are shown in Fig. 11.

This equilibrium-based argument can be used only to predict x0,escape
+ when such equilibria exist.

If (ν, λmax) are such that no equilibria exist [the hashed regions of Fig. 10(b)], there are two
possibilities: there may be values of λe < λmax for which there are equilibria, in which case the
droplets are always trapped, or there may be no equilibria for any λe < λmax, in which case they
always escape. The shape of these “always trapped” regions demonstrates that when surface tension
is very weak (small ν) only a small contact angle hysteresis λmax is needed to ensure that droplets
always get stuck, as we might expect. Moreover, the contact angle hysteresis needed to ensure
that droplets are always trapped reduces for droplets of smaller volume, which are associated with
smaller channel wall deflections (Fig. 11).

The regions of parameter space in which droplets always escape become appreciable only for
larger droplet volumes. (For example, for V = 0.1 this region is not clearly visible on the scale
of Fig. 11 but does exist.) The boundary between always escaping and sometimes being trapped
corresponds to equilibria with X− = 0, whose location we expressed analytically in (44)–(46); we
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FIG. 11. Predictions from the equilibrium calculations of how far along the channel the droplet must start
to escape, x0,escape

+ , if the maximum contact angle asymmetry is λmax and the bendability is ν (as in Fig. 10)
for droplet volumes V = (a) 0.1, (b) 0.2, (c) 0.4, and (d) 0.5. The color bar in (d) applies to each plot with the
appropriate value of V . The “always trapped” and “always escape” regions are as described in Fig. 10. The
filled circles in (b) correspond to the prediction of x0,escape

+ based on numerical solutions of the full (dynamic)
model (see main text).

therefore predict that droplets will always escape when

ν >
8

V 4

λmax

(1 + λmax)2

(
3λmax + 5

5λmax + 5

)4

. (59)

The boundary between always escaping and some trapping, given by equality in (59), is included as
the black dashed curves in Figs. 10(b) and 11. The sensitive dependence of (59) on V , νcrit ∝ V −4,
elucidates why the always escape region is not resolved for smaller volume droplets. Note that for
λmax � 1, the criterion (59) can be approximated by the simpler relation,

ν � 8

V 4
λmax, (60)

which agrees with (59) to within 10% for λmax = 0.05 (corresponding to θa ≈ 18◦), regardless of
the value of V .

We conclude with a comparison between the results of our equilibrium-based predictions and
numerical results of the full (dynamic) model. To do so, we compute x0,escape

+ numerically using a
bisection scheme, with the model equations solved numerically for many different initial conditions.
We use x0

+ = 0.97 as a first upper bound to avoid the situation where the “+” meniscus is pushed
onto the free end during the initial squeezing; droplets that are trapped even for x0

+ = 0.97 are
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said to always be trapped. Similarly, we use x0
+ = V + 0.03 (i.e., x0

− = 0.03) as the first lower
bound; droplets that escape even for x0

+ = V + 0.03 are said to always escape. (The pattern of
meniscus traces obtained in this way is qualitatively similar to those shown in Fig. 6.) The values
of x0,escape

+ obtained numerically using this procedure agree well with the values determined from
equilibrium calculation for λmax < 0.1. This can be seen in Fig. 11(b), where exact agreement would
be indicated by all colored circles being indistinguishable from the background colouring used at
that location; moreover, the red circles, which indicate parameter values for which droplets are never
observed to escape lie exclusively within the empty region towards the right, where corresponding
equilibria do not exist. We find that the numerically determined x0,escape

+ are systematically lower
than the equilibrium-based predictions [although this is not clearly visible in Fig. 11(b)], because
the equilibrium calculation does not account for the meniscus motion in the squeezing period.

VI. CONCLUSIONS

In this paper, we have presented a theoretical analysis of the effect of contact angle hysteresis on
the self-propulsion of droplets within deformable channels via bendotaxis. We focused in particular
on understanding when droplets may be unable to self-propel, and hence are trapped, by contact
angle hysteresis.

We developed a mathematical model in which contact angle hysteresis is parametrized by the
maximum contact angle asymmetry possible, λmax = cos θr/ cos θa − 1. Numerical solutions of the
model equations confirmed the intuition that when hysteresis is sufficiently strong (λmax sufficiently
large), droplets may be trapped in equilibrium part way along the channel, but this scenario is
possible only if droplets do not reach a translating stage defined by an advancing angle at the
meniscus closest to the free end of the channel and a receding angle at the meniscus closest to
the clamped end. By studying steady solutions of the model equations and assessing their linear
stability, we determined that these equilibria are stable provided that the associated contact angle
asymmetry is not too large and focused on this case.

We identified the importance of the quantity λ∞, the contact angle asymmetry required to hold
a given droplet in the pinned state (when equilibria are possible); λ∞ gives a simple criterion for
whether a droplet will ultimately escape: droplets in channels with initial conditions such that the
maximum contact angle asymmetry λmax � λ∞ will escape, while those with λmax > λ∞ will not. In
reality, λ∞ can be determined only by a full dynamic simulation, but our analysis of equilibria gives
an approximation for λ∞, allowing us to re-purpose our regime diagrams of where equilibria exist
to describe whether droplets of given parameters will be trapped or not. In doing so, we identified
regions of parameter space in which droplets will always escape and other regions in which droplets
are always trapped, regardless of where they start in the channel. The shape of these regions are
intuitive: when the channel bendability is small, only a small amount of contact angle hysteresis
is required to trap droplets, and droplets are more likely to be trapped in channels with higher
hysteresis (a prediction that is true even when the equilibrium analysis breaks down).

Although we considered only wetting configurations here, we note that the main results are
qualitatively similar for nonwetting configurations in which both the advancing and receding contact
angles are greater than 90◦ (see chapter 4 of Ref. [22]). The key quantitative differences are that,
for a given droplet volume, the “always trapped” region is larger (and the “always escape” region
smaller), for nonwetting configurations than for wetting configurations. Briefly, the nonlinearity
in the Laplace pressure boundary condition is responsible for this difference: nonwetting droplets
(which are associated with outwards channel wall deformations, h > 1) cannot create as large an
absolute droplet pressure, and thus deformation, while x− is pinned, as wetting configurations (the
meniscus pressure, which scales with 1/h, does not change as sharply when the meniscus advances
into an outward tapered channel than when advancing into an inward tapered channel).

Although our model is highly idealized, our results have implications for the exploitation of
mechanisms that result in self-propelling droplets. Most importantly, our results demonstrate that
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such systems are highly sensitive to contact angle hysteresis; in particular, we saw that even a modest
amount of hysteresis is sufficient to trap droplets over a wide range of parameter space and that the
velocity of droplets are significantly reduced when contact angle hysteresis is present. For example,
with νV 4 = 10−2 and θr = 0, corresponding to typical experimental values from [13], we predict,
using (60), that droplets are guaranteed to escape only when λmax < 1.25 × 10−3, corresponding to
a contact angle hysteresis of θa − θr < 3◦. This low value of the contact angle hysteresis that can
be tolerated by bendotaxis suggests that low friction and hysteresis surfaces such as SLIPS [33] (as
used by [13]), or LIS [34] should be used to guarantee the success of bendotaxis as a mechanism
for moving droplets.

The understanding of hysteresis that we have gained highlights the importance of minimizing it in
applications in which droplet motion is desired. Such considerations may be particularly important
for natural examples of bendotaxis. However, because these examples often occur on fibers (rather
than in the channels considered here), the precise effect of hysteresis is likely to depend on the
wettability of the drops involved. As an example in the nonwetting scenario, the spontaneous motion
of condensed water drops out of the hairy texture on the legs of water striders helps to maintain a
superhydrophobic state [15]; our results lead us to expect that, in the presence of hysteresis, motion
would only occur once a sufficiently large droplet has condensed. As an example in the wetting
scenario, small oil droplets on the barbules of bird feathers spread (causing the barbules to clump
together) but larger drops move to the end and can be shaken off [14]. In this case, transitions
between droplet shapes makes predicting the precise effect of hysteresis difficult, though one might
expect it to affect droplet motion in each state, as well as the transitions between states. Going
further, the understanding we have gained may also open new opportunities for passive droplet
control. In addition, there are several facets of the system that we have not considered, such as
the clamping angle and variable bending stiffness of the channel walls, which may provide further
opportunities for exploitation, when combined with trapping by contact angle hysteresis.
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APPENDIX A: POSTTRANSLATING DYNAMICS

In this appendix, we briefly mention the late-time behavior of droplet transport by bendotaxis,
focusing in particular on the possibility that the “−” meniscus may be forced to pass through further
pinning transitions, and justify our earlier assumption that the droplet cannot be trapped during this
period.

In Sec. III we describe the behavior of droplets up until they reach a translating stage (which
they always reach provided that the contact angle hysteresis is sufficiently small) and move towards
the free end of the channel. As the droplet approaches the free end of the channel, it may pass
through another squeezing period [shown schematically in Fig. 5(d)]: the high droplet pressure and
distance from the clamped end results in large channel deformations that force the rear meniscus
to decelerate again (by conservation of mass) until it becomes pinned and finally advances once
more, back towards the clamped end of the channel [see Fig. 5(d)]; all the while, the “+” meniscus
continues to accelerate and reaches the free end while the “−” meniscus is advancing.

We justify ignoring the possibility of droplet trapping in this late period by referring to the
condition (42) that is necessary for equilibria. Immediately as the droplet reaches the translating
stage, the pressure gradient is zero at the “−” meniscus and negative at the (still advancing) “+”
meniscus; the pressure is therefore more negative at the “+” meniscus, so p(x−, t )/p(x+, t ) < 1,
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FIG. 12. Evolution of the ratio of the channel widths at the menisci for the numerical solutions presented
in Fig. 5 (described in Sec. III A), with ν = 4, x0

+ = 0.65, V = 0.2 and color corresponding to the value of
λmax as follows: λmax = 0 (purple), λmax = 0.02 (blue), and λmax = 0.04 (green). The horizontal dashed lines
indicate h(x−, t )/h(x+, t ) = 1 + λ∞, the value in the trapped state, which is realized when λmax is sufficiently
large.

and therefore
h(x−, t )

h(x+, t )
>

h(x−, t )

h(x+, t )

p(x−, t )

p(x+, t )
= 1 + λmax, (A1)

where the equality comes from the Laplace pressure condition (30). As shown in Fig. 12, the ratio
h(x−, t )/h(x+, t ) subsequently increases. (This is because the inwards deformation of the channel
walls lengthens the droplet and thus the relative stiffness of the channel walls, and thus the ratio of
channel widths at the “+” and “-” menisci only increases.) Hence, any equilibrium satisfying (42)
would have λe > λmax, which is not possible.

APPENDIX B: LOCATING EQUILIBRIA

In this appendix we describe the method used to find solutions of Eqs. (33)–(40) describing an
equilibrium configuration he(x) whose menisci are located at x = X±.

We first “integrate out” the dry regions to give an equivalent problem defined only on the drop
region X− < x < X+ with the effect of the dry regions encoded by effective boundary conditions.
(This procedure is described in detail in the Appendix of Ref. [13] for the dynamic problem, but
follows in the same way for the static problem considered here.) We find the following system of
equations:

d4he

dx4
= p0, X− < x < X+ (B1)

where

p0 = − ν

he(X+)
= −ν(λe + 1)

he(X−)
(B2)

is the constant pressure within the droplet; the appropriate boundary conditions on the “wet”
problem, i.e., accounting for the behavior in the dry regions, are

d2he

dx2
− 2

X 2−

(
2X−

dhe

dx
− 3he + 3

)∣∣∣∣
x=X−

= 0, (B3)

d3he

dx3
− 6

X 3−

(
X−

dhe

dx
− 2he + 2

)∣∣∣∣
x=X−

= 0, (B4)

d2he

dx2

∣∣∣∣
x=X+

= 0, (B5)

d3he

dx3

∣∣∣∣
x=X+

= 0. (B6)
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Equations (B1)–(B6) must be solved together with the volume constraint

V =
∫ X+

X−
he(x) dx. (B7)

To make progress, we first note that the channel shape in the drop region may be expressed as

he(x) = p0

24
(x − x+)4 + K3(x − x+)3 + K2(x − x+)2 + K1(x − x+) + K0, (B8)

where Ki = Ki(X+, X−, p0), ı = 1, 2, 3, 4 are known. Since the boundary conditions (B5) and (B6)
are linear, the coefficients Ki, i = 1, 2, 3, 4 are also linear in the equilibrium pressure p0, and
multinomials in X±. Using the solution (B8), the channel displacement at the menisci can then
be expressed as

he(X+) = f+(X−, X+) + p0g+(X−, X+), (B9)

he(X−) = f−(X−, X+) + p0g−(X−, X+) (B10)

where f±, g± are known multinomials.
Inserting (B9) and (B10) into the two pressure conditions (B2) gives two quadratic equations for

the pressure p0:

p0[ f+(X−, X+) + p0g+(X−, X+)] = −ν, (B11)

p0[ f−(X−, X+) + p0g−(X−, X+)] = −ν(λe + 1). (B12)

Eliminating p0 from (B11) and (B12) gives a single multinomial whose coefficients depend on
parameters ν, λe:

F (X−, X+; ν, λe) = 0. (B13)

For given V, ν and λe, Eq. (B13) is nonlinear and therefore expensive to solve numerically. It is
more convenient to instead specify a meniscus position (typically X−) and solve for X+ only [thus
yielding he(x)], and computing the associated volume V a posteriori.

Assuming that X− is prescribed, (B13) is simply a degree nine polynomial equation for X+.
We solve this polynomial numerically using the MATLAB routine roots. Once Eq. (B13) has been
solved for X+, we keep only those roots that correspond to physically relevant solutions—i.e., those
with X− < X+ < 1 and for which the open end condition (41) are satisfied. By sweeping over all
permissible values of X−, we identify all possible equilibria.
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